skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCleary‐Petersen, Keelee Cathleen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Small molecule biomimetics inspired by the active site of the [FeFe]‐hydrogenase enzymes have shown promising electrocatalytic activity for hydrogen (H2) generation. However, most of the active‐site mimics based on [2Fe‐2S] clusters are not water‐soluble which limits the use of these electrocatalysts to organic media. Polymer‐supported [2Fe‐2S] systems, in particular, single‐site metallopolymer catalysts, have shown drastic improvements for electrocatalytic H2generation in aqueous milieu. [2Fe‐2S] complexes functionalized within well‐defined macromolecular supports via covalent bonding have demonstrated water solubility, enhanced site‐isolation, and improved chemical stability during catalysis. In this report, the synthesis of a new propanedithiolate (pdt)‐[2Fe‐2S] complex bearing a single α‐bromoester moiety for use in atom transfer radical polymerization (ATRP) is demonstrated as a novel metalloinitiator to prepare water‐soluble poly(2‐dimethylaminoethyl methacrylate) grafted (PDMAEMA‐g‐[2Fe‐2S]) metallopolymers. Using this approach, metallopolymers with controllable molecular weights (Mn= 5–40 kg mol−1) and low dispersity (Đ,Mw/Mn= 1.09–1.36) are prepared, which allows for the first time observation of the effect of the metallopolymers' chain length on the electrocatalytic activity. The ability to control the composition and molecular weight of these metallopolymers enables macromolecular engineering via ATRP of these materials to determine optimal structural features of metallopolymer catalysts for H2production. 
    more » « less